数学学科网 上传 客户端 扫码下载APP 定制您的专属资源库 网校通
高中数学知识点

该资料由本人自行归纳总结,对解决数列压轴题有意想不到的效果 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求 的值; (2)求证: . 解析:(1)因为 ,所以 (2)因为 ,所以 奇巧积累:(1) (2)

高中数学 高三 人教A 2017年高考复习 构造法在数列中的应用 一、形如(其中f(n)不是常数函数)型数列(累加法) 一般地,对于形如(其中f(n)不是常数函数)类的通项公式,且的和比较好求,我们可以采用此方法来求。 即:; 〖例1〗.(2015江苏理数11).数列满足,且(),则数列的前10项和为 。 二、形如=f(n)(f(n)为可求积的数列)型数列(累乘法) 一般地对于形如“已知a1,且=f(n)(f(n)为可求积的数列)”的形式可通过叠乘法求数列的通项公式。即:;

  • 1.0 普通点
  • 2017/3/3 15:20
  • 试题试卷
  • 421KB
  • 下载:60 次

高二(上) 数学(人教版) 等比数列定义 高二(上) 数学(人教版) 等比数列定义 高二(上) 数学(人教版) 等比数列定义 高二(上) 数学(人教版) 等比数列定义 [来自e网通客户端]

  • 免费
  • 2017/2/15 16:51
  • 视频
  • 19333KB
  • 下载:34 次

等差数列的前n项和 (第1课时)1.通过教学使学生理解等差数列的前n项和公式的推导过程,并能用公式解决简单的问题;(重点) 2.通过公式推导的教学使学生进一步体会从特殊到一般,再从一般到特殊的思想方法,通过公式的运用体会方程的思想.(难点)等差数列: 公 差: 通项公式: 等差中项: 重要性质: 注意:这里m,n,p,qÎN*.an+1-an=d(常数)dan=a1+(n-1)d(1)an=am+(n-m)d; (2)当m+n=p+q时,am+an=ap+aq.高斯 (1777—1855) 德国著名数学家1+2+3+…+98+99+100=? 高斯10岁时曾很快算出这一结果,如何算的呢?问题1:图案中,第1层到第21层一共有多少颗宝石? 这是求和的问题,你能不能快速的求出呢? 问题1:图案中,第1层到第21层一共有多少颗宝石? 获得算法:下面再来看1+2+3+…+98+99+100的高斯算法 [来自e网通客户端]

  • 2.0 普通点
  • 2016/12/10 8:43
  • 课件
  • 3204KB
  • 下载:53 次

课题名称:《数列》复习课 教师姓名:王玲 学校:北京市第十中学 年龄:35 教龄:13年 教学背景分析 (一) 本课时教学内容的功能和地位 数列在高考中占有重要的位置,也是高考命题的热点之一.由于数列内容的丰富性,应用的广泛性和数列属性的多样性,决定了数列在高考中地位的特殊性.这就要求我们在数列的复习中,要重视基础知识和方法的学习,理解和掌握等差、等比数列的基本知识与方法,帮助学生自我构架数列知识框图,实现对数列整体把握、多样解读数列属性的目标. (二) 学情分析 在北京市面对全体高中学生的调研中,多数同学认为在高中阶段的课程中,《数列》部分是最难的.在复习《数列》之初,本人亦进行了学生的问卷调查,学生更多地觉得数列难在方法技巧多、观察分析变形难等等.本讲面对的是进入一轮复习的高三学生,对《数列》的相关知识点有一定的掌握,学生具备一定的探究问题、分析问题和解决问题的能力,但缺乏对《数列》的整体把握和研究数列的一个“主线”,学生往往就事论事,只是一味地考虑解题情况.

  • 2.0 普通点
  • 2016/12/2 20:00
  • 备课综合
  • 7650KB
  • 下载:48 次

教学设计 数列求和方法3——错位相减 甘肃省华亭县第一中学 杜小弟 一.教学内容分析 本节内容是《普通高中课程标准实验教科书数学》人教A版必修5第二章中,学生在学习了等差数列和等比数列的通项公式以及前n项和公式的基础上,学习了求和方法:公式法、分组求和法之后的第3种求和方法,主要体现数学中的转化思想。即将不能直接求和的问题通过错位相减,转化为能用等比求和的问题。 重点:会用错位相减法求通项为等差数列与等比数列对应项乘积的数列前n项和。 难点:错位相减后的项数、符号问题,以及对转化数学思想的理解。

  • 2.0 普通点
  • 2016/12/2 19:37
  • 备课综合
  • 3596KB
  • 下载:31 次

《《等差数列》单元复习课》教学设计 海南省琼海市嘉积中学 周净 课题 《等差数列》单元复习课 项目 内 容 教学内容解析 《等差数列》是高中数学教材的重要内容之一, 等差数列作为一种特殊的函数,与函数思想密不可分,研究等差数列问题所需的恒等变形、解方程(组)、方程思想方法也是学生学习数学必须掌握的基本技能,学习等差数列有助于培养学生综合运用知识解决问题的能力. 本节课是一节单元复习课,1道例题和6道练习题都立足于课本,突出基础知识和基本技能,学生在解题的过程中回顾等差数列的相应知识点,形成知识网络,进一步加深对等差数列的理解和掌握。 学情分析 学生已经学习了等差数列的通项公式、前 项和公式及相关性质,也做了一些配套练习,但是对等差数列的认识还不够系统、深刻,做题还存在简单模仿和套公式,对概念和性质缺少思考,性质的运用也不熟练。此外,作为高二的学生,他们已经具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,思维特点是活跃、敏捷,但缺乏冷静、深刻,不够严谨. 教 学 目 标 1.知识与技能:掌握等差数列的通项公式、前 项和公式及相关性质. 2.过程与方法:通过典型例题讲解引导学生回顾等差数列的通项公式、前 项和公式及相关性质,通过课堂练习和巩固练习提高学生对知识的综合应用能力,通过归纳总结使学生构建等差数列知识网络. 3.情感态度与价值观:通过提出有指向性的问题,培养学生独立思考的习惯和发散思维,通过学生课堂的即时训练和归纳小结,培养对知识的应用意识和观察归纳的能力,通过让学生在课堂上获得成功体验,培养学生学习数学的兴趣.

  • 2.0 普通点
  • 2016/12/1 21:18
  • 备课综合
  • 976KB
  • 下载:32 次

课题:等比数列的前n项和 铜川矿务局第一中学 张向伟 一、教材分析 本节课选自《普通高中课程标准数学教科书·数学(必修5)》(北师大版)第一章第三节第一课时。从在教材中的地位与作用来:看《等比数列的前n项和》是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。 二、学情分析 从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨。

  • 2.0 普通点
  • 2016/12/1 21:14
  • 备课综合
  • 513KB
  • 下载:20 次

2016年高考新课标数学-数列专题2016年高考新课标数学-数列专题2016年高考新课标数学-数列专题

  • 1.0 普通点
  • 2016/11/21 14:11
  • 素材
  • 944KB
  • 下载:179 次

甘肃天水金榜高考学校2017年高考数学理科,以全国2卷试题难度范围相同,注重基础,训练能力, 薛蒖 ,甘肃天水金榜高考学校数学教研室)

  • 免费
  • 2016/11/14 10:08
  • 试题试卷
  • 1120KB
  • 下载:114 次

甘肃天水金榜高考学校2017年高考数学文科,以全国2卷试题难度范围相同,注重基础,训练能力, 薛蒖 ,甘肃天水金榜高考学校数学教研室) 一 选择题(本大题共12小题,每小题5分,共60分) 1.已知集合A={ },集合B为整数集,则A B= ( ) A. B. C. D. 2.下列四组函数中,表示同一函数的是( ) A.f(x)=|x|,g(x)= B.f(x)=lg x2,g(x)=2lg x C.f(x)= ,g(x)=x+1 D.f(x)= • ,g(x)= 3. 函数 在 处导数存在,则 是“ 是 的极值点”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 4.设 ,则 ( ) A.既是奇函数又是减函数 B.既是奇函数又是增函数 C.是有零点的减函数 D.是没有零点的奇函数 5.已知在 上的奇函数 ,满足 ,且在区间 上是增函数,则( ) A. B. C. D. 6.设 则 ( ) A. c《b《a B. a《b《c C. b《c《a D. b《a《c

  • 免费
  • 2016/11/14 10:08
  • 试题试卷
  • 163KB
  • 下载:87 次

江苏省东海高级中学2016-2017学年度第一学期 高二年级第一次学分认定 数学试题 一 、填空题:本大题共14小题,每小题5分,共70分,请把答案填在答题纸的相应位置上 1.不等式 的解集为 ▲ . 2.在等差数列{an}中,若a2=4,a4=2,则a6= ▲ . 3.若点 在二元一次不等式 所表示的平面区域内,则实数 的取值范围是 ▲ . 4.已知数列 是递增的等比数列, ,则数列 的公比 = ▲ . 5.若 , ,则 ▲ (选 符号其中之一填空). 6.若 满足不等式 ,则 的最大值是 ▲ . 7.在等差数列{an}中,若a3+a4+a5+a6+a7=25,则 =__ ▲ .

《等差数列》教学课例(高中数学,盐港中学:凡继志) (1份打包) 压缩包中的资料: 《等差数列》教学课例(高中数学,盐港中学:凡继志).flv [来自e网通客户端]

  • 免费
  • 2016/10/27 8:59
  • 视频
  • 95493KB
  • 下载:643 次

数列通项公式的求法 考点1:由数列的前几项求数列的通项 【观察法】(关键是找出各项与项数n的关系:横向看各项之间的关系结构,纵向看各项与项数n的内在联系,从而归纳出数列的通项公式。) 例1、根据下面各数列前几项的值,写出数列的一个通项公式: (1)-1,7,-13,19,…; (2)

  • 免费
  • 2016/10/4 12:35
  • 教案
  • 165KB
  • 下载:782 次

课程介绍: 数列类型的判别是研究数列性质及相关问题的关键,因此能根据数列各类型的判别方法,准确的判别是等差、等比数列,便成了解决数列问题的首先解决的问题,本节课就是根据等比数列的判别方法,帮助学生完成等比数列的判断及相关问题,将一般性的问题进行特殊化的转变,为解决等比数列及相关问题做好铺垫. 课程设计: 刘立洋,中教一级教师,毕业于教育部直属重点大学,从教十余年,是学校青年骨干教师,所任教的班级学生的数学成绩高于同年段的其他班级的数学成绩,他教学思想活,教学方法多,深受社会各界的认可,曾荣获各级优秀奖项.

  • 30.0 储值
  • 2016/9/29 9:03
  • 视频
  • 167426KB
  • 下载:254 次

课程介绍: 掌握数列的通项是打开数列的窗口,但研究数列的求和是对数列更深层次的探讨,也是解决数列综合问题的关键点,本节课将从常见的数列求和中的另一组合错位相减求和入手,帮助学生分析及研究数列,提高学生解决问题的能力 课程设计: 刘立洋,中教一级教师,毕业于教育部直属重点大学,从教十余年,是学校青年骨干教师,所任教的班级学生的数学成绩高于同年段的其他班级的数学成绩,他教学思想活,教学方法多,深受社会各界的认可,曾荣获各级优秀奖项.

  • 30.0 储值
  • 2016/9/29 8:57
  • 视频
  • 185709KB
  • 下载:314 次

课程介绍: 等比数列是数列分类的重要分支,是高考的必要考点之一,通过对等比数列的和与性质的研究与探讨,不仅能提升学生对等比数列的认识,同进时更能增加学生对数列的更深认识,提高学生分析问题的能力及解决问题的能力。 课程设计: 刘立洋,中教一级教师,毕业于教育部直属重点大学,从教十余年,是学校青年骨干教师,所任教的班级学生的数学成绩高于同年段的其他班级的数学成绩,他教学思想活,教学方法多,深受社会各界的认可,曾荣获各级优秀奖项.

  • 30.0 储值
  • 2016/9/29 8:57
  • 视频
  • 140898KB
  • 下载:327 次

类型一:利用 与 的关系 【例1】(1)数列 的前 项和 满足 ,则 _____________. (2)若数列 的前 项和 ,则 的通项公式是 _____________. (3)(2015全国Ⅱ)设 是数列 的前 项和,且 , ,则 _______. 变式训练1(1)若数列 的前 项和 ,则此数列的通项公式为 _______. (2)已知数列 的前 项和为 , , ,则 ____________. (3)数列 满足 ,则 ( )

  • 免费
  • 2016/9/28 8:18
  • 素材
  • 131KB
  • 下载:152 次

课程介绍: 数列是高中代数的重要内容之一,也是初等数学与高等数学的衔接点,因而在历年的高考试题中占有较大的比重,在这类问题中,求数列的通项往往是 解题的突破口、关键点。如果能顺利的求出通项,将为第二问及第三问奠定重要的基础,所以数列的通项是高三学生及高三的任教教师关注的重要考点,因此帮助学生顺利通过数列的第一关,是本节课的重要的内容。 课程设计: 刘立洋,中教一级教师,毕业于教育部直属重点大学,从教十余年,是学校青年骨干教师,所任教的班级学生的数学成绩高于同年段的其他班级的数学成绩,他教学思想活,教学方法多,深受社会各界的认可,曾荣获各级优秀奖项. [来自e网通客户端]

  • 30.0 储值
  • 2016/9/27 13:43
  • 视频
  • 168547KB
  • 下载:178 次

课程介绍: 数列的通项是研究数列的窗口,而数列的通项在高考数列中是综合题的第一问,如果能顺利的求出通项,将为第二问及第三问奠定重要的基础,所以数列的通项是高三学生及高三的任教教师关注的重要考点,因此帮助学生顺利通过数列的第一关,是本节课的重要的内容。 课程设计: 刘立洋,中教一级教师,毕业于教育部直属重点大学,从教十余年,是学校青年骨干教师,所任教的班级学生的数学成绩高于同年段的其他班级的数学成绩,他教学思想活,教学方法多,深受社会各界的认可,曾荣获各级优秀奖项. [来自e网通客户端]

  • 30.0 储值
  • 2016/9/27 13:41
  • 视频
  • 178890KB
  • 下载:154 次